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A Generalized Spectral-Domain Green’s
Function for Multilayer Dielectric

Substrates with Application to
Multilayer Transmission Lines

NIROD K. DAS AND DAVID M. POZAR, MEMBER, IEEE

Abstract —A generalized full-wave Green’s function completely defining

the field inside a mrrkilayer dielectric structure due to a current elemeut

arbitrarily placed between auy two layers is derived iu two-dimensional

spectral-domain form. It is derived by solving a “ staudard” form contain-

iug the current elemeut with two substrates on either side of it, and using

an iterative algorithm to take care of addhiorral layers. Another iterative

algorithm is then used to find the field in any layer in terms of the field

expressions iu the two layers of the “standard” form. The locations of the

poles of the Green’s function are predicted, and an asymptotic form is

derived along with the asymptotic limit, by use of which the multilayer

Green’s fnnction can be used in numerical methods as efficiently as the

single-layer grounded-dielectric- substrate Green’s fnnction. This Green’s

function is then applied to a few multilayer transmission lines for which

data are not found iu the literature to date.

I. INTRODUCTION

sPECTRAL-DOMAIN Green’s functions are exten-

sively used for analysis of microstrip antennas and

planar transmission lines [1]–[7]. In [1], the Green’s func-

tion for one-layer grounded dielectric substrate is used for

analysis of rectangular microstrip patch antennas. In [2],

similar Green’s function for two dielectric layers with the

same dielectric constant are used to study rnicrostrip an-

tennas with a protective dielectric cover. In both [1] and

[2], the two-dimensional Green’s function is derived by

solving Maxwell’s equations in the spectral domain with

suitable boundary conditions at all interfaces. Extending

this procedure for multiple layers (dielectric or ground

planes), which is necessary for a number of applications,

becomes too complicated. In [8], the spectral-domain

Green’s function for mtiltiple layers is presented in one

dimension to solve transmission-line structures; it uses an

equivalent transinission-line model along with some simple

coordinate transformations. Solutions of multilayer trans-

mission-line structures in the spectral domain are also

presented in different forms in [9] and [10].

In this paper, a generalized spectral-domain Green’s
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function in two dimensions is derived in a way similar to

[1] and [2] in terms of suitable components of the vector

electric and magnetic potentials. With these vector poten-

tials, the boundary conditions are simplified into equiv-

alent transmission-line problems in the spectral domain, as

in [8]. The solutions are then simplified to solving a

“standard” form containing only two layers of dielectric

substrates, and computing the effect of all other layers by

the use of an iterative algorithm. Iterative algorithms are

derived (i) to compute the contribution of all other layers

and (ii) to compute the Green’s function in a different

layer on the basis of knowledge of the Green’s function in

a layer adjacent to the exciting current element. The be-

havior of this Green’s function is analyzed in detail from

the point of view of using it in a computationally efficient

manner. Locations of the TE and TM surface wave poles

are predicted, and methods to locate them accurately are

demonstrated. The complexity of computing the Green’s

function increases in proportion to the number of layers;

thus, it may not be numerically efficient in moment-method

solutions of complex structures. An asymptotic form is

obtained in a very simple way, however, which can be as

efficient in its numerical evaluation as a single-layer

grounded-dielectric-substrate Green’s function. The

threshold beyond which the asymptotic form is valid is

given.

This Green’s function is then used to study a number of

planar transmission-line structures. Using this

~ reen’s function, the propagation constant of a transmis-

sion-line structure is found as the solution to an integral
equation. The expression for characteristic impedance is

also obtained. Practical transmission-line-structure prob-

lems, such as the effect of a small air gap introduced while

fabricating striplines and covered microsttip lines by over-

lapping two dielectric substrates, are studied. Characteris-

tics of covered microstrip lines with a dielectric cover of

different dielectric constant, and striplines with two differ-

ent dielectric substrates are also obtained. Dispersion char-

acteristics of some multilayer TEM-like transmission-line

structures are given for a range of frequencies from 1.0 to

10.0 GHz. Data are given for standard available substrate
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Fig. 1. GeometW ofgeneraked multilayer configuration ofdielectfic substrates.

dimensions. Critical behaviors are discussed as far as pos-

sible in all cases.
In Section II, the Green’s function, and the associated

iterative algorithm necessary to compute it, are derived. In

Section III, the behavior of the Green’s function is studied.

In Section IV, various transmission-line structures are

treated using the derived Green’s function, and data are

presented.

II. THEORY

A. Decomposition of Field Using Electric and Magnetic

Vector Potentials

The field in any region can be completely defined by

suitable components of the electric and magnetic vector

potentials. In conventional TE or TM (to x, y, or z)

decomposition to completely define a field, the choices are

(AX, FX), (A,, FY), and (Az, FZ), respectively, where the

A‘s and F‘s are components of the vector electric and

magnetic potentials. In [1] and [2], the fields have been

decomposed using AX and AZ. But, in fact, any two

components of (AX, AY, A,, FX, FY, F=) can completely de-

fine a field in any space. The choice is decided, however,

by the fact that in some configurations the analysis is

greatly simplified by using certain combinations.

In the present analysis, the field is decomposed using

(xt=, FZ), the motivations for which will be justified below.

Now, with reference to the coordinate system shown in

Fig. 1, the vector potentials are chosen as

~= A=(x, y,z)2 (1)

~= F=(x, y,z)2. (2)

For an arbitrary surface-current distribution in the xy

plane between the 11 and 21 layers, such that

~(x, y)= JJx(x, y)l+<,(x>Y)j (3)

the solution to A=, F= or any component of ~ or ~ can be

written using the corresponding Green’s function. For

example, *

~z(x, y, Z) = ~~ [GA,JX(X>Y, Zbo, ~O)J.(xO~ ~0)
source

+ %tz~Y(x> Y, zlxo> yO)Jy(xO> YO)] dxodyo. (4)

For the Green’s function G, the first subscript is the

field (~ or ~) or potential (AZ or F=) component and the

second subscript is the source component ( JX or .lY). The

Green’s function for JX or JY with the source coordinate at

(xo, yo) can be obtained by solving Maxwell’s equations

for the corresponding field or potential component with

surface-current density ~ = 8(x – X. ) 8 ( y – yo).f or ~ =

8(x – Xo)tl(y – yo)j, respectively.

Now, ‘define a transform pair in two dimensions:

~.(~x, ~,, Z) = ~~m A=(x, y, z)e-’k:xe-’kyydxdy (5)
—w

A=(x, y, z)= +j:m~:~z(kxkykz )e’kxxe’kyydk. dky
‘m

(6)

and similarly for all other components of ~, ~, A: and ~.

From (5) and (6), and some simple coordinate transforma-

tions, it can be shown that in the spectral domain (4) can
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be transformed to

,:z/~:m[%4Az(x, y,z)=— kx,ky,zlo,o)~(kx, ky)

+dA=Jx(kyj-~xjzlo)o)j(~x> ~y)]
.~jk,xeJk,y dkx dky (7)

which means that the Green’s function for A-Z can be

written in vector form as

~~.~(k.>ky,z)

[(= GA,JX kX, kY, zlo,o)i + ~~,~x(kY, -kX, zlO,O)j].

(8)

Similar equations can be obtained for components of ~,

~, or F=.

It can be noted from (7) that the spectral-domain Green’s

function for the source component JX only, with the source

coordinate at (O,O), can completely define the correspond-

ing dyadic Green’s function, and that this can be obtained

for different field or potential components by solving

Maxwell’s equations in the spectral domain for the corre-

sponding field or potential components with

~=8(x)a(y)f. (9)

In the next section, the complete solutions for various field

and potential components are derived in the spectral do-

main with ~ as given in (9). The expressions in spectral

form for different field components (~X, ~y, ~z, fiX,

fiY, I?Z) and different potential components (AZ, #z) thus

correspond to the Green’s functions with source JX and

source coordinate at (O,O).

B. Spectral-Domain Solutions for the Green’s Functions

Using the transform equations (5) and (6), and the

expression for ~, given. in (9), the X and E fields in a

source-free region can be written in terms of A-=, i, as

(lo)

(11)

(12)

(13)

(14)

(15)

The wave equations in the space domain

V2A=+k2A, =0 (16)

V2FZ+k2Fz=0 (17)

transform to

a‘Az
—+p%,=o
azz

a‘~
—-+pi?, =o
azz

(18)

(19)

where

~’=k ’–k; –kz k=kofi,
Y’

Imp <O. (20)

With reference to Figs. 1 and 2, the general solution to

(18) and (19) can be written for layer (ij) as

~zZJ = (e-~fl,z~ + r~lle~~~’~ ) a,, (kX, ky) (21)

~z,, = ( e–jfl,z,, + r~ijeJ%z/ )jlj ( kX, ky ) (22)

where the r~’s, I’~’s, a ‘s, and f‘s are the unknowns to’ be

solved from different boundary conditions at different

interfaces. It can be noted here that (21) and (22) are in a

form equivalent to the equations for voltage or current

waves on a transmission line.

C. The “Standard” Form

For layers 11 and 21, which are at the two sides of the

current elements, as shown in Fig. 2, (21) and (22) become

lZII = (e’P’” + I_~lle-J~l”) all (23)

~=,1= (e-J~*lZ+ r~21eJ~*Z)a21 (24)

& = (eJp”2 + r~lle-J~ll’) a21 (25)

FZ21= ( e-J621z+ I’~21e~~z1’) f,l. (26)

In these expressions, the q‘s are unknowns to be de-

termined by solving the boundary conditions at other

interfaces, and hence are functions of the parameters of

other layers. These are considered known in this section.

So, we have four unknowns, all, a ‘1, fll, f21, which can be

solved as a function of r .11! rA ,17 k17 rF21 by sojving four
bouncJary conditions in the spectral domain: (i) EX, (ii) ~Y,

(iii) HX are continuous across the boundary between layers

11 and 21, and (iv)

ti,,l – FYJZ=O=l. (27)

These boundary conditions, along with the spectral-

domain field expressions (10)–(15) result in a set of simul-

taneous equations to be solved for a ,1, f21, all. and fll.
The results are

‘y”~O(l + ‘Fll)
f’1 =

T,(k; +k;)

kx(l – rm)k’~11
a21=

T~(k; +lc; )
,.

’11= w

– kx(l– rA21)P21/~21
all =

T. k:+ k: )
(31)

(28)

(29)

(30)
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Fig. 2. Electric current element (top) at the interface of two layers, 11

and 21 (the “standard” problem) and the boundary (bottom) between

two generalized layers, (1, J) and (1, J + 1), not containing the current

element between them, with the second layer extending to infinity.

where

Tm = j[&l/cll(l + r~zl)(l– r~ll)

+ pzl/czl(l + r~ll)(l – rA21)l(32)
T,= j[pll(l– rFIJ(~+ rF21)+~21(l– rF2J(l+ rFIJ].

(33)

Equations (28)-(33) along with (23)-(26) define the solu-

tions for A-= and ~z in the 11 and 21 layers in terms of

r~n, rml, r~ll,-r~zl, a:d are referred to as the standard
solutions for A= and F,, respec~ively. By using (10)–(15),

and the standard solutions for A, and F=, the correspond-

ing standard solutions for ~ and R can be obtained. These

standard expressions are applicable to any multilayer

structure having the standard source structure of Fig. 2.

The effect of other layers is taken into account via the I’ ‘s.

These )7’s are functions of the parameters of other layers

(thickness, dielectric constant) and can be obtained by

solving Maxwell’s equations in the other layers with suit-

able boundary conditions (continuity of all fields) between

any two adj scent layers.

D. Boundaq Conditions at Other Interfaces

The boundary conditions at other interfaces can be

solved by using th~ tr~nsf~rme~ field equations (10)–(15)

and continuity of EX, EY, HX, HY across the boundaries. It

can be noted here that with the choice of electric and

magnetic vector potentials, the boundary conditions can be

solved separately for A-Z and flz. With other choices of A–

T

z#ii+l/Eii+l T
=Z%+l ..=

cl

‘? Q; ~.
&= Zc= f3@

,,1
=Z%i

n“ q-
kij.l ‘1YFti

Fig. 3. The transmission tine models for A“, and ~ showing the equiv-

alences between different transmission-line and field parameters.

and ~, this would not lhave been possible, since coupled

equations would result.

The I”s of the field expressions are found to be equiv-

alent to reflection coefficients for a transmission line

terminated by another infinite transmission line of differ-

ent characteristic impedance, as shown in Fig. 3. For the

magnetic potential, the equivalent transmission-line im-

pedance is equal to (/?/6), which is the same as the TM

wave impedance, while for the electric potential the equiv-

alent transmission-line admittance is equal to (~/p), which

is same as the TE wave admittance. Also, the reflection

coefficient for A-z is equivalent to the reflection coefficient

of a current wave in a transmission line, while the reflec-

tion coefficient for ~z is equivalent to that of a voltage

wave in a transmission line.

These equivalences can be written in terms of the follow-

ing equations:

where

2A,, = &J/E,l Y<, = @ij/pi, = /31J/po .

(34)

(35)

(36)

For the case when the second layer is a perfect electric

conductor (pee), we have

(37)

(38)

The above formulation was for the case where the

second medium is of infinite extent. But if it is finite, and

is covered with another layer and so on, we can generalize

the expressions for r~ , rF using transmission-line equa-

tions. The boundary c;ndit’{ens can be solved again for all

the interfaces, and the general results given below can be

derived. The expressions for r‘s are given in terms of

iterative formulas as

(2A -2:
r~,j = rj e- 2JflIJDI~= e-2Jb’JD’J

)
“+1 (39)

fJ
(?4:+ %+1)-, .,—.
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and similarly,

(YF –Y;
~F = ~- 2J$Z, D,, “

1,+1 )

(J

(
YF + Y:,+l

lJ )

where

(l-rAt,+,)

‘~J+I= (I+ rA,,+,) ‘~IJ+I

(l+rE,+,)

‘~+1= (1+ r~,+l) ‘~J+I”

(40)

(41)

(42)

With the above iterative expressions r~,,, r~,l, 1’~11,17~,1may

be found in terms of kX, kY and C,,J, ~,, for all layers.

Thus, the Green’s functions for A“z and F= are obtained by

the use of (28)–(33) and the expressions for the 17‘s. The

Green’s functions for ~ and ~ are then derived using

(10)-(15).

For more than one layer, if the final form of the Green’s

function is written in terms of the individual c‘s and D ‘s,

it becomes extremely complex. So, it is advisable to use the

iterative formula in the form given in (39)–(42) as a part of

the numerical computation of the Green’s function. In a

way, then, the Green’s function is obtained numerically

rather than in closed form. For some specific geometries,

the Green’s functions for ~ and ~ can be obtained

without undue complexity.

The Green’s functions obtained so far are valid for

layers 11 and 21. To be complete, we must find the

Green’s functions in the other layers as well, which can be

done by using (10)-(15) and (21)-(22), where the ~ ‘s, a ‘s,

and r‘s are obtained from a transmission-line analogy. An

iterative algorithm to compute a,, + ~ from a ,j is

= 2e ‘JBV‘l Ja,JZA
JJ

and similarly,

/[ ( )1(1+ rA,,+,) 2A +~j~1’+12A,,+, (43)
,J

/,+1

[A )1I–rF ,
(I+ rF,,+,) YFZ,+ ~+r”+ .

F,, +l

(44)

III. BEHAVIOR OF THE GREEN’S FUNCTION

A. Asymptotic Form

The Green’s function which has been derived is compu-

tationally complex, and the complexity increases with the

number of layers. But because of the form in which the

Green’s function is derived, there is the possibility of

asymptotically simplifying it into a Green’s function for a

T
simpler equivalent structure. The a = k; + k; limit be-

yond which the original Green’s function converges to the

equivalent asymptotic form is also given. Hence, beyond

this asymptotic limit, all multilayer structures can be

treated as a simple two-layer problem.

For large a > kOG, where ~,~= = max (t,,,),

P,l = – ji~- .- j. for all i, j. (45)

From (34)–(36), it can be shown that the 2A’s and YA’s are

real, which implies that Irj,j I <1 and \rAIJ I < e- 2“DIJ.

Hence, for a > ah, such that e- ‘a’hD/l is less than some

preassigned arbitrary small value ~,

lrA,,l = o (46)

and so all the layers above the (ij) layer are equivalent to

one infinite extension of the substrate at the ij layer (for

an infinite layer, the 17A’sand rF’s are zero) in the asymp-

totic limit. Hence, in the asymptotic limit, all multilayer

structures are equivalent to the structure containing the

immediate two layers, extended to infinity, on each side of

the current element. The reason for this is that large values

of a account for the reactive field of the source, which is a

localized effect. As an example, Fig. 4 sho~s the asymp-

totic behavior of the Green’s function (161) for various

multilayer configurations having the same 11 and 21

(standard) layers. All cases converge to curve no. 7, the

results for two semi-infinite layers.

With the above argumlent, the asymptotic expressions

for the Green’s functions of the components of ~, ~, A,,

and F= can be obtained from the corresponding standard

expressions by replacing the 17’s with 0’s. Thus, in the

asymptotic limit

kyup

f21 = fll = ~ (47)
e

(48)

(49)

where

Tm = ~(BIJ~ll + &’~21) (50)

T,= j(~ll +&l). (51)

The worst-case asymptotic limit occurs for the greater of

al or a2 such that

e–%% < <rand e –21x2D21 ~ ~ (52)

where ~ is a preassigned small value.

With similar arguments, the following conclusions can
be drawn regarding the behavior of the Green’s functions

for multilayer structures.

1) The Green’s function for a field point different from

the plane of the current element exciting it is exponentially

convergent with a, which implies that the computation of

mutual coupling between two current patches on different

planes converges much faster than that of self-reaction or



DAS AND POZAR: GREEN’S FUNCTION FOR MULTILAYER DIELECTRIC SUBSTRATES

t

1.0 .

1
111 1!, 117=1

10’ 102 103 104

(%4J
Fig. 4. Convergence of ~ExJ~ kx, kY, 0/0,0) with a = fikx = fikp to a
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GHz.

mutual coupling between current patches in the same

plane.

2) The worst-case asymptotic limit given by (52), beyond

which the Green’s function converges to the proposed

asymptotic form of (47)–(51), depends on the thicknesses

of the layers adjacent to the current element. This effect is

shown in Fig. 4, which shows that convergence to the

asymptotic limit is faster for thicker layers.

3) The Green’s function for a structure with a ground

plane (I rl =1) converges slowly in comparison to a similar

structure without a ground plane; e.g., the Green’s func-

tion for a stripline structure with two dielectrics converges

more slowly than the Green’s function for a covered

microstrip structure with the same two dielectrics. This

effect is shown in Fig. 4 by curve no. 1 (a stripline-type

geometry), and curve no. 4 (a covered microstrip-line-type

geometry).

4) The convergence of $21 and ~11 is of the order of

l/a2, whereas the convergence of azl and all is l/a.

Hence, from (10)–(15), it can be concluded that the Green’s

function for E is dominated in the asymptotic limit by the

contribution from A-z, being of the order of al, whereas

the contribution from ~’ is of the order of a-1. Thus, in

the asymptotic limit, the spectral-domain solution for ~

can be treated as TM to z.

5) The significant difference between the Green’s func-

tions for different rnultilayer structures with the same

standard substructure lies in the smaller values of a, but
for higher values of a (typically greater than 20ko), all

these structures can be treated as equivalent to the stan-

dard structure, with the substrates on both sides of the

current element extending to infinity. Then, the techniques

for this simple two-layer structure can be applied without

any problem [3], [4].

,,
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Fig. 5. The locus of all the TE, TM surface wave poles (aP) at 3 GHz

K.along the a axis, in the range k.< ar <k. c mm and with different

cover heights ( D21 = D2 ), for a covered microstnp lrne and the corre-
sponding locus of the effective dielectric constants. The locus of the
highest surface wave poles for the same covered microstnpline with an

air gap (8) between the two dielectric layers and the corresponding
locu~ ;f ~eff for the same w are also sho~.

B. TM and TE Poles of the Green’s Function

An important point to be considered for

domain integration of the Green’s function

the spectral-

is the treat-

ment of the surface wave poles. The poles of a Green’s

function component can be found from the zeros of the T,

and T~ expressions of (34) and (35). Sometimes, one pole

of a Green’s function due to a. zero of T, or T~, which

appears in the denominator, may be removable due to a

zero of equal order in the numerator.

The TE and TM polles of the Green’s function due to

zeros of the T, and T~ expressions, respectively, can be

interpreted as possible excitation of TE or TM surface

wave modes (in the case of microstrip-line structures) or

possible excitation of TE or TM waveguide modes (in the

case of stripline structures). Whether these modes are

actually excited or not in a given problem remains to be

determined.

It has been found that all the poles of any Green’s

function component lie between k. and ko=. In this

interval, the T,, Tm expressions can be searched for zeros

by using an exhaustive search technique. Using the

Newton-Raphson method, the poles of the Green’s func-

tion for different multilayer structures can be determined,

and some results are given in Fig. 5 for covered microstrip

structures with variable air gaps.
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IV. APPLICATION TO MULTILAYER PLANAR

TRANSMISSION LINES

With reference to Fig. 1, for amultilayer rnicrostrip or

strip transmission line in the 2 direction with the conduc-

tor running between layers 11 and 21 and having width w

in the ~ direction, the expression for the surface-current

density on the conductor can be written as

Z(X, y) = e-Jk@f(y)i (53)

where ke( = kO~) is the effective propagation constant

and ~(y) is the transverse variation of current density on

the conducting line. Using (53) and an equation similar to

(9) with @~xJx instead of ~~zJx gives

/“”2 J.(X Y)~x(x+Y,o) ~Y
– w/2

=$/: %(
–ke, ky,olo,op(ky)’dky

cc
where

sin(kYw/2)
F(k), ) = JW’2 f(y)e-~k”.’~y =

– w/2 kyw/2

(54)

(55)

and ~~yJx is obtained from the expressions of ~’,Jx and

GFZJXand (10).

The left-hand side of (54) can be equated to zero [7];

hence, ~,ff can be found by solving the following integral

equation:

(m ~~w~w(– k=, kp,010,0)F(k,)2dk, = O. (56)
<_w --

This integral equation was solved using the interval-halv-

ing method. In the integration, the poles of the integrand

were carefully taken into account. It was observed, how-

ever, that the effective dielectric constant obtained by

solving (56) was always greater than ( ap ~= /kO) 2, where

a~ ~= is the highest pole of the Green’s function of the

microstrip-line structure, confirming the fact that there is

no excitation of surface wave power in an infinite micro-

strip line [7]. An example of this effect is shown in Fig. 5

for covered microstrip line with a variable air gap. But for

a stripline structure, the effective dielectric constant may

be greater than, equal to, or less than the corresponding

(a, ~= /kO)’, leading to probable excitation of some wave-

guide modes.

The characteristic impedance was found using the fol-

lowing equation:

[/ J
z=” w/2

—— –EZ(x, y,z)J1*(x, y)dydz
gP — w/2 1
Nw/2_~/2f(Y),Y1

V&,——
I

(57)

on the conductor with respect to the ground plane (gp).
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Fig. 6. (a) cef~ of a covered microstnp line as a function of w \Dl, with
D2 /D1 as a parameter. (b) Characteristic Impedance ( ZC) of the above
covered microstrip line with Cr2 = 2.53, <,1 = 2.53 as a function of w for
various cover thicknesses D2 /D1.

For convenience, so far as equivalence to the generalized
structure of Fig. 1 is concerned, in this section, c~1,c~2, Dl,

and D2 are referred to respectwely, as c~11,c~21, Dll, and

D21 for microstrip and strip lines without an air gap and as

C,ll, C,22, Dll, and D22 for microstrip and strip lines with

an air gap (8); the air gap is the 21 layer, C,21=1.0, and

8 = D21.

A. Microstrip Line with a Dielectric Cover

The analysis was applied to the case where the dielectric

constant of the cover substrate was the same as that of the

original microstrip line. The effective dielectric constant

(Ceff ) and characteristic impedance (ZJ are parts (a) and

(b) shown in Fig. 6 for a covered microstrip line with
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Fig. 7. (a) Ceff and (b) Z, as a function of w for a stripline with

c.1 ‘= 2.2, ~,1 = 10.2 at 3 Gllz for different combinations of Dz and DI.

c, = 2.53 as a function of w/D1, and D2/D1 as a parame-

ter. The characteristic impedance Z, is not affected signifi-

cantly by the cover substrate, but the effective dielectric

constant changes drastically with the cover height. For

smaller values of line width w, the effective dielectric

constant of this type of covered microstrip line is very

sensitive to even very thin covers. Unlike the uncovered

microstrip line, the effective dielectric constant for a

covered microstrip line decreases with an increase in the
width (w) of the conductor for smaller values of w. This

trend is more prominent over a larger region of w for

thicker cover substrates.

For a large value of cover height ( D2), as shown in Fig.

6(a), the covered microstrip line behaves as a TEM line

with Ceff equal to cr. In Fig. 6(b), the characteristic imped-

ance for D2 /D1 = 4.0 is compared with ZC(tir) /&, where

I 5. .05

6. @ I
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W[cmsl

(a)

70 _

60 _

50 .

s

E
z
o
‘“ 40 _

N
1

30 _ —

20 _

I I I I I
.0 .1 .2 .3 .4 .5 .6

W [cmsl

(b)

Fig. 8. (a) ceff and (b) ZC as a function of w for a covered microstrip
line with C,2 = ~,1 = ~,=10.2. D2 = D1= D = 50 mil and an air gap (8)
at 3 GHz.

ZC(ti,) is the characteristic impedance of the equivalent air

microstrip line, obtained exactly using a conformal map-

ping technique [11].

B. Striplines with Two Different Dielectric Substrates

The Green’s function is now applied to striplines with

two different dielectric substrates on the two sides of the

conductor. The effective dielectric constant of this type of

stripline is shown in Fig. 7(a), and does not vary if the

ratio of Dz to D1 is unchanged. The corresponding char-
acteristic impedances, shown in Fig. 7(b), depend on the

individual thicknesses of the two substrates ( D1 and Dz )

rather than on their ratio. As expected, the trend of the

effective dielectric constant decreases with a decrease in

the thickness of the smaller dielectric constant substrate,

and increases with a decrease in the thickn~ss of the larger

dielectric constant substrate. This is because a greater
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Fig. 9. (a) c=ff and (b) ZC as a function of w for a stripline with

C,z = C,I = c.=1O.2, D2 = DI = D =50 mil and an air gap (8) at 3 GHz.

percentage of the total field goes into a substrate when the

thickness of that substrate decreases. .

C. Effect of A ir Gaps Introduced Between Two Layers of

Covered Microstrip Line or Stripline

The air-gap introduced while fabricating a covered mi-

crostrip line or a stripline, by overlapping one substrate on

another, is found to have a very significant effect on the

effective dielectric constant of the transmission line, as

shown in Fig. 8(a) (microstrip) and Fig. 9(a) (stripline). It

is particularly drastic for smaller values of the width of the

transmission line. The corresponding characteristic imped-

ances, shown in Fig. 8(b) and Fig. 9(b), respectively, are

found to be relatively insensitive to the air gap. For

example, the ~,ff can change from a high of 9.6 to a low of

8.0 for a covered microstrip line with erz = C,l = 10.2 and

w = 0.1 cm (50-fl line) if an air gap of 0.01 cm is intro-

duced; the corresponding increase in characteristic imped-

ance is from 50 L? to 53 !2.
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Fig. 10. (a) c,ff and (b) Z, showing the dispersion characteristics of (1)
a covered microstrip line with C,2 = C,l = 10.2, w = 0.1 cm, and D2 = D1
=50 roil; (2) a covered microstrip line with (,1= 10.2, C,2 = 2.2, D1 =

50 roil, D2 = 50 roil, and w = 0.1 cm; (3) a microstrip line with c,= 10.2,
D = 50 roil, and w = 0.12 cm; and (4) a stnpline with C,l = 10.2,

C.Z = 2.2, DI = 50 roil, D2 = 62 roil, and w = 0.12 cm.

D. Comparison of Dispersions for Different

Transmission Lines

Because the analysis uses the full-wave Green’s function,

it can treat dispersion in multilayer transmission lines

exactly. The relative degrees of dispersion in different

configurations of planar transmission lines are compared
in parts (a) and (b) of Fig. 10 for frequencies up to

10 GHz. A stripline with two different dielectrics is found

to be relatively more dispersive than a covered microstrip

line. The dispersion is more if the two dielectric constants

are markedly different, as expected. A covered microstrip

line with a cover of the same dielectric constant is less

dispersive than the corresponding microstrip line without a

cover.

V. CONCLUSIONS

A computer program was developed to compute the

generalized Green’s function using the exact as well as the

asymptotic forms derived in this paper. The program was
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usecl to find the effective dielectric constant C,ff and

characteristic impedance Z= of any arbitrary multilayer

microstrip or strip transmission line. TE and TM poles

were accurately determined and taken into account, and

the validity of using the asymptotic form was verified. It is

thus concluded that this generalized Green’s function can

be conveniently used for numerical solutions of various

multilayer transmission line and antenna structures.
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