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A Generalized Spectral-Domain Green’s
Function for Multilayer Dielectric
Substrates with Application to
Multilayer Transmission Lines

NIROD K. DAS anp DAVID M. POZAR, MEMBER, IEEE

Abstract — A generalized full-wave Green's function completely defining
the field inside a multilayer dielectric structure due to a current element
arbitrarily placed between any two layers is derived in two-dimensional
spectral-domain form. It is derived by solving a “standard” form contain-
ing the current element with two substrates on either side of it, and using
an iterative algorithm to take care of additional layers. Another iterative
algorithm is then used to find the field in any layer in terms of the field
expressions in the two layers of the “standard” form. The locations of the
poles of the Green’s function are predicted, and an asymptotic form is
derived along with the asymptotic limit, by use of which the multilayer
Green’s function can be used in numerical methods as efficiently as the
single-layer grounded-dielectric-substrate Green’s function. This Green’s
function is then applied to a few multilayer transmission lines for which
data are not found in the literature to date.

I. INTRODUCTION

SPECTRAL-DOMAIN Green’s functions are exten-
sively used for analysis of microstrip antennas and
planar transmission lines [1]-[7]. In [1], the Green’s func-
tion for one-layer grounded dielectric substrate is used for
analysis of rectangular microstrip patch antennas. In [2],
similar Green’s function for two dielectric layers with the
same dielectric constant are used to study microstrip an-
tennas with a protective dielectric cover. In both [1] and
[2], the two-dimensional Green’s function is derived by
solving Maxwell’s equations in the spectral domain with
suitable boundary conditions at all interfaces. Extending
this procedure for multiple layers (dielectric or ground
planes), which is necessary for a number of applications,
becomes too complicated. In [8], the spectral-domain
Green’s function for multiple layers is presented in one
dimension to solve transmission-line structures; it uses an
equivalent transinission-line model along with some simple
coordinate transformations. Solutions of multilayer trans-
mission-line structures in the spectral domain are also
presented in different forms in [9] and [10].

In this paper, a generalized spectral-domain Green’s
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function in two dimensions is derived in a way similar to
[1} and [2] in terms of suitable components of the vector
electric and magnetic potentials. With these vector poten-
tials, the boundary conditions are simplified into equiv-
alent transmission-line problems in the spectral domain, as
in [8]. The solutions are then simplified to solving a
“standard” form containing only two layers of dielectric
substrates, and computing the effect of all other layers by
the use of an iterative algorithm. Iterative algorithms are
derived (i) to compute the contribution of all other layers
and (ii) to compute the Green’s function in a different
layer on the basis of knowledge of the Green’s function in
a layer adjacent to the exciting current element. The be-
havior of this Green’s function is analyzed in detail from
the point of view of using it in a computationally efficient
manner. Locations of the TE and TM surface wave poles
are predicted, and methods to locate them accurately are
demonstrated. The complexity of computing the Green’s
function increases in proportion to the number of layers;
thus, it may not be numerically efficient in moment-method
solutions of complex structures. An asymptotic form is
obtained in a very simple way, however, which can be as
efficient in its numerical evaluation as a single-layer
grounded-dielectric-substrate Green’s function. The
threshold beyond which the asymptotic form is valid is
given.
This Green’s function is then used to study a number of
planar transmission-line structures. Using this
wreen’s function, the propagation constant of a transmis-
sion-line structure is found as the solution to an integral
equation. The expression for characteristic impedance is
also obtained. Practical transmission-line-structure prob-
lems, such as the effect of a small air gap introduced while
fabricating striplines and covered microstrip lines by over-
lapping two dielectric substrates, are studied. Characteris-
tics of covered microstrip lines with a dielectric cover of
different dielectric constant, and striplines with two differ-
ent dielectric substrates are also obtained. Dispersion char-
acteristics of some multilayer TEM-like transmission-line
structures are given for a range of frequencies from 1.0 to
10.0 GHz. Data are given for standard available substrate

0018-9480,/87 /0300-0326$01.00 ©1987 IEEE



DAS AND POZAR: GREEN’S FUNCTION FOR MULTILAYER DIELECTRIC SUBSTRATES

N>

327

\.

A
Z2n
253 I ! 205 €0, Don
3 ‘ 2i, €& , Dpj
. 232 | : » ©2§ 2]
2y 23:€3 , D33
I 22,€22 , D22 / /
1 Jdx= 5()8Y)21,€21 , Doy A
€ D X
L~ 114€11 11
51 I ~ 12,6, , D12
A .
212 1i,€1j , Dyj
% 1m,€ym , Dim
A
-Y A
Zim

Fig. 1. Geometry of generalized multilayer configuration of dielectric substrates,

dimensions. Critical behaviors are discussed as far as pos-
sible in all cases.

" In Section 11, the Green’s function, and the associated
iterative algorithm necessary to compute it, are derived. In
Section 111, the behavior of the Green’s function is studied.
In Section IV, various transmission-line structures are
treated using the derived Green’s function, and data are
presented.

II. THEORY

A. Decomposition of Field Using Electric and Magnetic
Vector Potentials

The field in any region can be completely defined by
suitable components of the electric and magnetic vector
potentials. In conventional TE or TM (to x, y, or z)
decomposition to completely define a field, the choices are
(4, F,), (4,, F), and (4,, F,), respectively, where the
A’s and F’s are components of the vector electric and
magnetic potentials. In [1] and [2], the fields have been
decomposed using A, and A4,. But, in fact, any two
components of (A,,4,, 4,, F,, F,, F,) can completely de-
fine a field in any space. The choice is decided, however,
by the fact that in some configurations the analysis is
greatly simplified by using certain combinations.

In the present analysis, the field is decomposed using
(A,, I,), the motivations for which will be justified below.
Now, with reference to the coordinate system shown in
Fig. 1, the vector potentials are chosen as

A=A,(x,y,2)% (1)

)

F=F/(x,y,z)%.

For an arbitrary surface-current distribution in the xy
plane between the 11 and 21 layers, such that

(3)

the solution to 4,, F, or any component of E or H can be
written using the corresponding Green’s function. For
example, '

A,(x,y,2)= // [GAsz(x’)”Z|xo’)’o)-]x(x0,)’o)

source

+ GA,Jy(x7 Y, Z|Xq, yO)Jy(x07 )’o)] dxodyy.  (4)

J(x,y) =T (x, y)&+ J,(x,y)p

For the Green’s function G, the first subscript is the
field (E or H) or potential (A, or E)) component and the
second subscript is the source component (J, or J,). The
Green’s function for J, or J, with the source coordinate at
(xg, ¥o) can be obtained by solving Maxwell’s equations
for the corresponding field or potential component with
surface-current density J, =8(x — x,)8(y — y,)% or J, =
0(x — x0)8(y — y,) P, respectively.

Now, define a transform pair in two dimensions:

‘/iz(kx’ ky’ Z) = f,[w AZ(X, Y Z)e—ijXe—jkyydxdy (5)

— 0
1 . .
A,(x, ,2)=7— f_ww f_wwAz(kx, ks k,) e/kme ko dic i,

(6)

and similarly for all other components of E, H, A, and F.
From (5) and (6), and some simple coordinate transforma-
tions, it can be shown that in the spectral domain (4) can
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be transformed to

Az(x’ y,Z) = Z}W_Ef_/f;[é/ij

k,,20,0).(k k)]

x>y

2|0,0)J(k,, k)

x’ y7 x> Ny

+Gy,(k,,
-ekTesM dk dk, (7)

which means that the Green’s function for A, can be
written in vector form as

GA__J(kx’ ky’ Z)

=[Gk Ky, 210,002+ G, (K, ~ k,, 2(0,0) 5]

(8)

Similar equations can be obtained for components of E,
H,or F,

It can be noted from (7) that the spectral-domain Green’s
function for the source component J, only, with the source
coordinate at (0,0), can completely define the correspond-
ing dyadic Green’s function, and that this can be obtained
for different field or potential components by solving
Maxwell’s equations in the spectral domain for the corre-
sponding field or potential components with

Jo=8(x)8(y)x. (9)
In the next section, the complete solutions for various field
and potential components are derived in the spectral do-
main with J; as given in (9). The expressions in spectral
form for dlfferent field components (E,, E JE, H,
, H)) and different potential components (AZ, E) thus
correspond to the Green’s functions with source J, and
source coordinate at (0,0).

B. Spectral-Domain Solutions for the Green’s Functions

Using the transform equations (5) and (6), and the
expression for J, given in (9), the £ and H fields in a
source-free region can be written in terms of A4, F as

5 _ ke 04, i )
x_wE oz _.]yz (O)

(11)

(12)

H. =jk Ad,+—= —=
X ] Y-z w” az (13)
H =-jk A AE (14)
4 TR wp 0z

(15)

The wave equations in the space domain
V2, +k*4,=0
V2F,+k*F,=0

(16)
(17)

transform to

2q .

afz+3%2=0 (18)
-

o7 B =0 (19)

where
Br=k>—kZ-kZ,  k=kge,,
With reference to Figs. 1 and 2, the general solution to
(18) and (19) can be written for layer (if) as
= (e‘ff"wzu+1’ efﬁuzu) (k k,)

xs y

ImpB<0. (20)

A,

E, = (e P+ Ty eom)f (K, k)

zty x? 7Ty

(21)
(22)

where the I';’s, I's’s, a’s, and f’s are the unknowns to be
solved from different boundary conditions at different
interfaces. It can be noted here that (21) and (22) are in a
form equivalent to the equations for voltage or current
waves on a transmission line.

zl

C. The “Standard” Form

For layers 11 and 21, which are at the two sides of the
current elements, as shown in Fig. 2, (21) and (22) become

Ay = (e + T e Pn%)ay, (23)
A, = (ePn? 4 Tpye27)ay (24)
Fyy= (e + T e Put)ay (25)
F, = (e/Pn7 + Tpyefni) fy. (26)

In these expressions, the I'’s are unknowns to be de-
termined by solving the boundary conditions at other
interfaces, and hence are functions of the parameters of
other layers. These are considered known in this section.
So, we have four unknowns, ayy, a4, f11, f>1, which can be
solved as a function of Ty, Iy, Ty, Iy by solving four
boundary conditions in the spectral domain: (i) E_ (i) E
(iii) H, are continuous across the boundary between layers
11 and 21, and (iv)

Hv21 - H

y11|z=0

=1. (27)

These boundary conditions, along with the spectral-
domain field expressions (10)—(15) result in a set of simul-
taneous equations to be solved for a,;, fy. ay;. and f;.
The results are

_ kywﬂo(1+ PFll)
2T (k2+k2)
o = kx(l - I‘/111)311/511
a T, (k2 +k2)
fu= ky‘*’.“o(l + FF21)
7;{k§4—k§i
g = _kx(l—FAu):le/le
u T, (k2+k2)

(28)

(29)

(30)

(31)
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Fig. 2. Electric current element (top) at the interface of two layers, 11
and 21 (the “standard” problem) and the boundary (bottom) between
two generalized layers, (1,J) and (1, J 4 1), not containing the current
element between them, with the second layer extending to infinity.

where
= j{Bu/en(1+ Tip)(1-Tyy)
+ B /en(1+Ta)(1-Tpa)] (32)
T, = j[Bu(1= T )1+ Ty ) + By (1= Tyt )1+ Ty

(33)
Equations (28)-(33) along with (23)-(26) define the solu-
tions for A, and F, in the 11 and 21 layers in terms of
T a1 Taows Trips Ipar, and are referred to as the standard
solutions for A~z and 17’2, respectively. By using (10)-(15),
and the standard solutions for 4, and F,, the correspond-
ing standard solutions for E and H can be obtained. These
standard expressions are applicable to any multilayer
structure having the standard source structure of Fig. 2.
' The effect of other layers is taken into account via the I'’s.
These I'’s are functions of the parameters of other layers
(thickness, dielectric constant) and can be obtained by
solving Maxwell’s equations in the other layers with suit-
able boundary conditions (continuity of all fields) between
any iwo adjacent layers.

D. Boundary Conditions at Other Interfaces

The boundary conditions at other interfaces can be
solved by using the transformed field equations (10)—(15)
and continuity of E,, E,, H,, H, across the boundaries. It
can be noted here that with the choice of electric and
magnetic vector potentials, the boundary conditions can be
solved separately for 4, and F,. With other choices of 4
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Fig. 3. The transmission line models for A, and £ F. showing the equiv-
alences between different transmission-line and field parameters.

and F, this would not have been possible, since coupled
equations would result.

The T'’s of the field expressions are found to be equiv-
alent to reflection coefficients for a transmission line
terminated by another infinite transmission line of differ-
ent characteristic impedance, as shown in Fig. 3. For the
magnetic potential, the equivalent transmission-line im-
pedance is equal to (B/¢), which is the same as the TM
wave impedance, while for the electric potential the equiv-
alent transmission-line admittance is equal to (8/p), which
is same as the TE wave admittance. Also, the reflection
coefficient for A, is equivalent to the reflection coefficient
of a current wave in a transmission line, while the reflec-
tion coefficient for F, is equivalent to that of a voltage
wave in a transmission line.

These equivalences can be written in terms of the follow-
ing equations:

(ZA, ”ZA,,H) _ (:Bij/eij_nBij+1/€ij+1)

(34)

( ,+1) (Bij/‘ij+ﬁzj+1/€z,+1)
( ) (:B'j—B'j 1)
u+l — i i+ 35
( ,_,+1) (Bij+Bu+1) ( )
where
ZA,J=,B;,/€,/ F, =:3ij/l’-i,=:8,,/.‘-"o- (36)

For the case when the second layer is a perfect electric
conductor (pec), we have
‘ I, =1 Z, =0

pec pec

TIQ = _1 YFpec= 0.

pec

(37)
(38)

The above formulation was for the case where the
second medium is of infinite extent. But if it is finite, and
is covered with another layer and so on, we can generalize
the expressions for Iy r I‘F using transmission-line equa-
tions. The boundary conditions can be solved again for all
the interfaces, and the general results given below can be
derived. The expressions for I'’s are given in terms of

iterative formulas as
zZ, - 2T
FA =I‘I‘; e—ZjBljD:/_—__e_z.lﬂunLAll__.iZ:Q (39)
v (z,,+27 )

v
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and similarly,

Y, = Y7 )
F =e_“2jB,lej( F:/ F:j+l
T

where

T ( xj+l

(41)

)
AT 15T, ) T, ) Zy,s
( )

. 1+T%
Y,
F” (14T, )

1y+1

I_]+l (42)

) F.,+1

With the above iterative expressions I', , A21’ I's I, may
be found in terms of k,, k, and ¢, , D, for all layers.
Thus, the Green’s functlons for A, and F are obtained by
the use of (28)—(33) and the expressions for the I'’s. The
Green’s functions for £ and H are then derived using
(10)—~(15).

For more than one layer, if the final form of the Green’s
function is written in terms of the individual €’s and D’s,
it becomes extremely complex. So, it is advisable to use the
iterative formula in the form given in (39)~(42) as a part of
the numerical computation of the Green’s function. In a
way, then, the Green’s function is obtained numerically
rather than in closed form. For some specific geometries,
the Green’s functions for E and H can be obtained
without undue complexity.

The Green’s functions obtained so far are valid for
layers 11 and 21. To be complete, we must find the
Green’s functions in the other layers as well, which can be
done by using (10)—(15) and (21)-(22), where the f’s, a’s,
and I'’s are obtained from a transmission-line analogy. An
iterative algorithm to compute a,,,, from a,, is

(1+1Ty )

au+1 = at] (1+ FAU+1)

=2e /B0,
2e7Putua, 7,

[(1 +T,, )

and similarly,

fyer= 20700, Y, / [(H Tr,..)

!

1-T,
Z, +———227, 43
s 14T, T (43)

i+l

1-T,
Y, +——||.
A Iy .

(44)

III. BEHAVIOR OF THE GREEN’S FUNCTION

A. Asymptotic Form

The Green’s function which has been derived is compu-
tationally complex, and the complexity increases with the
number of layers. But because of the form in which the
Green’s function is derived, there is the possibility of
asymptotically simplifying it into a Green’s function for a
simpler equivalent structure. The a=\/k}+k, limit be-
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yond which the original Green’s function converges to the
equivalent asymptotic form is also given. Hence, beyond
this asymptotic limit, all multilayer structures can be
treated as a simple two-layer problem.

For large a> kg€, oy, where €, . = max(e,, ),

B,=— N’ —k* =~ ja (45)

From (34)—(36), it can be shown that the Z,’s and Y ’s are
real, which implies that |Tj |<1 and |T,, |<e 2*Pu.
Hence, for a> ay, such that e™2*wly is less than some
preassigned arbitrary small value 7,

II‘AUIZO

for all i, j.

(46)

and so all the layers above the (ij) layer are equivalent to
one infinite extension of the substrate at the jj layer (for
an infinite layer, the I';’s and I';’s are zero) in the asymp-
totic limit. Hence, in the asymptotic limit, all multilayer
structures are equivalent to the structure containing the
immediate two layers, extended to infinity, on each side of
the current element. The reason for this is that large values
of a account for the reactive field of the source, which is a
localized effect. As an example, Fig. 4 shows the asymp-
totic behavior of the Green’s function (|G|) for various
multilayer configurations having the same 11 and 21
(standard) layers. All cases converge to curve no. 7, the
results for two semi-infinite layers.

With the above argument, the asymptotic expressions
for the Green’s functions of the components of E, H, A,,
and F, can be obtained from the corresponding standard
expressions by replacing the I'’s with 0’s. Thus, in the
asymptotic limit

k op

fn=fu= T o2 (47)
- kx:821
= 48
ay elemaz ( )
kxﬁll
= 49
ar euTmaz ( )

where
Tmzj(311/€11+321/€21) (50)
Tezj(Bll+1821)' (51)

The worst-case asymptotic limit occurs for the greater of
a; Or a, such that

e 2Pu <5 and e 2%Pu <

(52)

where 7 is a preassigned small value.

With similar arguments, the following conclusions can
be drawn regarding the behavior of the Green’s functions
for multilayer structures.

1) The Green’s function for a field point different from
the plane of the current element exciting it is exponentially
convergent with «, which implies that the computation of
mutual coupling between two current patches on different
planes converges much faster than that of self-reaction or
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mutual coupling between current patches in the same
plane.

2) The worst-case asymptotic limit given by (52), beyond
which the Green’s function converges to the proposed
asymptotic form of (47)—(51), depends on the thicknesses
of the layers adjacent to the current element. This effect is
shown in Fig. 4, which shows that convergence to the
asymptotic limit is faster for thicker layers.

3) The Green’s function for a structure with a ground
plane (|I'| =1) converges slowly in comparison to a similar
structure without a ground plane; e.g., the Green’s func-
tion for a stripline structure with two dielectrics converges
more slowly than the Green’s function for a covered
microstrip structure with the same two dielectrics. This
effect is shown in Fig. 4 by curve no. 1 (a stripline-type
geometry), and curve no. 4 (a covered microstrip-line-type
geometry).

4) The convergence of f,; and f,; is of the order of
1/a?, whereas the convergence of a, and a;; is 1/a.
Hence, from (10)—(15), it can be concluded that the Green’s
function for E is dominated in the asymptotic limit by the
contribution from A4,, being of the order of af, whereas
the contribution from E is of the order of a~. Thus, in
the asymptotic limit, the spectral-domain solution for E
can be treated as TM to z.

5) The significant difference between the Green’s func-
tions for different multilayer structures with the same
stanndard substructure lies in the smaller values of «, but
for higher values of a (typically greater than 20k,), all
these structures can be treated as equivalent to the stan-
dard structure, with the substrates on both sides of the
current element extending to infinity. Then, the techniques
for this simple two-layer structure can be applied without
any problem [3], [4].

2 2
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| . oazem_
D, &r=102
20 2 LT i(S,[air] —
Er==102 T
50mils
e
o, [ B Pl N I
Ko 3Kg 5Kg KL% 9% Ko.en“ax
[ loxg [25Kg Ik Ixove,,,,
o AXIS

Fig. 5. The locus of all the TE, TM surface wave poles (a,) at 3 GHz
along the a axis, in the range ko < &, < koy/€, o and with different
cover heights (D, = D,), for a covered microstrip line and the corre-
sponding locus of the effective dielectric constants. The locus of the
highest surface wave poles for the same covered microstripline with an
air gap (8) between the two dielectric layers and the corresponding
locus of e for the same w are also shown.

B. TM and TE Poles of the Green’s Function

An important point to be considered for the spectral-
domain integration of the Green’s function is the treat-
ment of the surface wave poles. The poles of a Green’s
function component can be found from the zeros of the T,
and T,, expressions of (34) and (35). Sometimes, one pole
of a Green’s function due to a.zero of T, or 7,,, which
appears in the denominator, may be removable due to a
zero of equal order in the numerator.

The TE and TM poles of the Green’s function due to
zeros of the T, and T, expressions, respectively, can be
interpreted as possible excitation of TE or TM surface
wave modes (in the case of microstrip-line structures) or
possible excitation of TE or TM waveguide modes (in the
case of stripline structures). Whether these modes are
actually excited or not in a given problem remains to be
determined.

It has been found that all the poles of any Green’s
function component lie between k, and kgye, .. - In this
interval, the T,, T, expressions can be searched for zeros
by using an exhaustive search technique. Using the
Newton-Raphson method, the poles of the Green’s func-
tion for different multilayer structures can be determined,
and some results are given in Fig. 5 for covered microstrip
structures with variable air gaps.
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IV. APPLICATION TO MULTILAYER PLANAR
TRANSMISSION LINES

With reference to Fig. 1, for a multilayer microstrip or
strip transmission line in the £ direction with the conduc-
tor running between layers 11 and 21 and having width w
in the y direction, the expression for the surface-current
density on the conductor can be written as

J(x, y) =e " (y)% (53)
where k(= ke ) is the effective propagation constant
and f(y) is the transverse variation of current density on
the conducting line. Using (53) and an equation similar to
(9) with GE s, instead of G, 1, gives

w/2
/ S0 p)E(x. 3.0) dy

—W

1 o0 .
=4—772 _OOGEXJX(—ke7ky’O|OaO)F(ky)2dky (54)
where . ( )
w /2 ey g SO k,w,/2
Bl = [ 1) dy === (59)

and Gy s, 1s obtained from the expressions of G, s, and
Gr,. and (10).
The left-hand side of (54) can be equated to zero [7];
hence, €. can be found by solving the following integral
equation:

© & 2
| Ge(= ko k,,010,0)F(k,) die, =0 (56)

— o0
This integral equation was solved using the interval-halv-
ing method. In the integration, the poles of the integrand
were carefully taken into account. It was observed, how-
ever, that the effective dielectric constant obtained by
solving (56) was always greater than (a, 4,/ k)%, where
@, nax 18 the highest pole of the Green’s function of the
microstrip-line structure, confirming the fact that there is
no excitation of surface wave power in an infinite micro-
strip line [7]. An example of this effect is shown in Fig. 5
for covered microstrip line with a variable air gap. But for
a stripline structure, the effective dielectric constant may
be greater than, equal to, or less than the corresponding
(@) max/ k)?, leading to probable excitation of some wave-
guide modes.

The characteristic impedance was found using the fol-
lowing equation'

sz — ko k, z) (y)zdkydz]
/[fw/2 f(y)dy]

= [fz*Ofw/2 _Ez(x’y’Z)Jx*(x’y)dde}
—w/2

/ Iysr]

= (57)

on the conductor with respect to the ground plane (gp).
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Fig. 6. (a) € of a covered microstrip line as a function of w /D, with

D, /D, as a parameter. (b) Characteristic impedance (Z,) of the above
covered microstrip line with €,, = 2.53, ¢,; = 2.53 as a function of w for
various cover thicknesses D, /D,.

For convenience, so far as equivalence to the generalized
structure of Fig. 1 is concerned, in this section, ¢, €,,, D,
and D, are referred to respectively, as €,4;, €,,;, Dy, and
D, for microstrip and strip lines without an air gap and as
€41, €,22, D11, and D,, for microstrip and strip lines with
an air gap (0); the air gap is the 21 layer, ¢,5, =1.0, and -
§=D,,.

A. Microstrip Line with a Dielectric Cover

The analysis was applied to the case where the dielectric
constant of the cover substrate was the same as that of the
original microstrip line. The effective dielectric constant
(e.) and characteristic impedance (Z,) are parts (a) and
(b) shown in Fig. 6 for a covered microstrip line with
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Fig. 7. (a) €4 and (b) Z as a function of w for a stripline with
€,, =22, ¢, =10.2 at 3 GHz for different combinations of D, and D;.

€,=2.53 as a function of w /D, and D, /D, as a parame-
ter. The characteristic impedance Z, is not affected signifi-
cantly by the cover substrate, but the effective dielectric
constant changes drastically with the cover height. For
smaller values of line width w, the effective dielectric
constant of this type of covered microstrip line is very
sensitive to even very thin covers. Unlike the uncovered
microstrip line, the effective dielectric constant for a
covered microstrip line decreases with an increase in the
width (w) of the conductor for smaller values of w. This
trend is more prominent over a larger region of w for
thicker cover substrates.

For a large value of cover height (D,), as shown in Fig.
6(a), the covered microstrip line behaves as a TEM line
with e equal to ¢,. In Fig. 6(b), the characteristic imped-
ance for D, /D, = 4.0 is compared with Z_ ;. / \/Z , Where
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Fig. 8. (a) €4 and (b) Z, as a function of w for a covered microstrip
line with €,, = €,; =¢,=10.2, D, = D; = D = 50 mil and an air gap (8)
at 3 GHz.

Z (airy 1s the characteristic impedance of the equivalent air
microstrip line, obtained exactly using a conformal map-
ping technique [11].

B. Striplines with Two Different Dielectric Substrates

The Green’s function is now applied to striplines with
two different dielectric substrates on the two sides of the
conductor. The effective dielectric constant of this type of
stripline is shown in Fig. 7(a), and does not vary if the
ratio of D, to D, is unchanged. The corresponding char-
acteristic impedances, shown in Fig. 7(b), depend on the
individual thicknesses of the two substrates (D; and D,)
rather than on their ratio. As expected, the trend of the
effective dielectric constant decreases with a decrease in
the thickness of the smaller dielectric constant substrate,
and increases with a decrease in the thickness of the larger
dielectric constant substrate. This is because a greater
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Fig. 9. (a) ey and (b) Z. as a function of w for a stripline with
€,=¢,=¢=102, D)= D= D =50 mil and an air gap (8) at 3 GHz.

percentage of the total field goes into a substrate when the
thickness of that substrate decreases.

C. Effect of Air Gaps Introduced Between Two Layers of
Covered Microstrip Line or Stripline

The air-gap introduced while fabricating a covered mi-
crostrip line or a stripline, by overlapping one substrate on
another, is found to have a very significant effect on the
effective dielectric constant of the transmission line, as
shown in Fig. 8(a) (microstrip) and Fig. 9(a) (stripline). It
is particularly drastic for smaller values of the width of the
transmission line. The corresponding characteristic imped-
ances, shown in Fig. 8(b) and Fig. 9(b), respectively, are
iound to be relatively insensitive to the air gap. For
example, the e, can change from a high of 9.6 to a low of
8.0 for a covered microstrip line with €,, =¢,, =10.2 and
w=0.1 cm (50-Q line) if an air gap of 0.01 cm is intro-
duced; the corresponding increase in characteristic imped-
ance is from 50 € to 53 Q.
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Fig. 10. (a) €. and (b) Z, showing the dispersion characteristics of (1)
a covered microstrip line with ¢, =¢,) =102, w=0.1 cm, and D, = D,
=50 mil; (2) a covered microstrip line with ¢,, =102, ¢,, =22, D, =
50 mil, D, = 50 mil, and w = 0.1 cm; (3) a microstrip line with €, =10.2,
D =350 mil, and w=012 cm; and (4) a stripline with ¢, =10.2,
€,,=22, D; =50 mil, D, =62 mil, and w=0.12 cm.

D. Comparison of Dispersions for Different
Transmission Lines

Because the analysis uses the full-wave Green’s function,
it can treat dispersion in multilayer transmission lines
exactly. The relative degrees of dispersion in different
configurations of planar transmission lines are compared
in parts (a) and (b) of Fig. 10 for frequencies up to
10 GHz. A stripline with two different dielectrics is found
to be relatively more dispersive than a covered microstrip
line. The dispersion is more if the two dielectric constants
are markedly different, as expected. A covered microstrip
line with a cover of the same dielectric constant is less
dispersive than the corresponding microstrip line without a
cover.

V. CONCLUSIONS

A computer program was developed to compute the
generalized Green’s function using the exact as well as the
asymptotic forms derived in this paper. The program was
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used to find the effective dielectric constant €. and

characteristic impedarice Z_ of any arbitrary multilayer
microstrip or strip transmission line. TE and TM poles
were accurately determined and taken into account, and
the validity of using the asymptotic form was verified. It is
thus concluded that this generalized Green’s function can
be conveniently used for numerical solutions of various
multilayer transmission line and antenna structures.
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